26 °C Singapore, SG
February 22, 2024
Latest News
Corio Generation and bp Alternative Energy Investment Ltd invest in South Korea Australia missing climate targets Advocating for US based offshore wind Broken Record, Temperatures hit new highs, yet world fails to cut emissions (again) Toshiba and GE to shore up Japanese offshore wind domestic supply chain How I got here… National University of Singapore green finance academic Sumit Agarwal Multi-billion-dollar renewables project earmarked for Yindjibarndi native title land Smart Energy Finances: Enel divests 50% of Australian renewable operations to Japanese oil and gas giant Critical minerals investments surged by 30% finds IEA Kung Fu nuns fight climate change One of Southeast Asia’s largest energy storage systems comes online Why turning waste into gas will add value to this Indigenous economy Renewable energy records tumble around Australia as rooftop solar power soars Topsoe supports SGP BioEnergy in renewable fuels production in Panama ‘Poor tropical regions’ suffer greatest economic damage from worsening heatwaves UNEP: Meeting global climate goals now requires ‘rapid transformation of societies’ Analysis: Africa’s unreported extreme weather in 2022 and climate change Partly wind-powered coal ship sails into Newcastle New fossil fuels ‘incompatible’ with 1.5C goal, comprehensive analysis finds Australian offshore wind ‘supercharged’ in Victoria as billions pledged to fast-track projects Goldwind turbine ‘breaks world record for largest rotor diameter’, Chinese media reports BW Ideol to work with developer Taiya on Taiwan floating wind pilot US to boost floating wind power Wind Power in South Korea – an overview GS E&C to develop bioethanol using cassava waste Korean business group has asked the US to make exceptions for Korean EV’s in Inflation Reduction Act Equinor’s Australian offshore wind debut Global energy transition stalls – 2022 Global Status Report in pictures India’s ReNew Power secures $1bn loan for gigascale 24/7 wind-solar-battery project POSCO International to merge with POSCO Energy

Indoor-Grown Weed Is Spewing Carbon Into the Atmosphere

Back in the pre-legalization days, cannabis production meant finding a rarely visited patch of land and growing outside, or it meant taking cultivation indoors—typically to a basement where your product wouldn’t be visible from the outside world. But the power-use involved in lighting a basement growing space was legendary.

With legalization, it’s really only the scale that has changed. Most legal marijuana is grown indoors, with some pretty hefty electrical use to match. Now, researchers have attempted to quantify the greenhouse gases emitted, and they came up with some impressive figures. Based on their calculations, cannabis production results in over 2,000 kilograms of carbon dioxide emitted for every kilogram of product (defined as dried flowers), and its legalization has had a measurable effect on Colorado’s greenhouse gas output.

In many locations that have legalized cannabis production, a lot of factors make indoor growth a reasonable option, including simplifying security, enabling year-round production, and simply the experience that comes from now-professional growers having years of practice as amateurs. But Colorado—one of the first states to legalize the wacky-tabacky—added what is presumably an accidental inducement by requiring that the majority of the cannabis put up for sale has to be grown on the site where it is sold. You can either use good agricultural land to grow it, or you can sell it near the urban centers and campuses where demand is higher—but not both.

Everybody knows anecdotally that cannabis growing chews through electricity. But the only figures we have on the actual usage come from the pre-legalization days. So Hailey Summers, Evan Sproul, and Jason Quinn, all at Colorado State, decided to provide some up-to-date figures.

To do so, they obtained hourly data on both weather conditions and the carbon intensity of emissions for the entire United States. These were fed into a model that used them to estimate the carbon emissions caused by the air conditioning needs of cannabis production. The model also took into account all the other ways that indoor production resulted in carbon emissions, ranging from fertilizer manufacturing to disposal of plant waste, and it included emissions associated with transportation of these materials. Overall, the model was used to explore the production-associated emissions in over 1,000 different locations within the US.

The big unknown in all of this is the frequency at which the air in the growing facility is turned over. Reported rates range from a complete replacement of the facility’s air 12 times an hour to up to 60 times an hour. The team produces figures across the entire range but mostly reported figures for 20 turnovers/hour.

In the end, electrical usage was the primary driver of greenhouse gas emissions, as you’d expect. But there were some unexpected twists in the details.

For example, the highest electricity consumption tended to be in the US southeast, where the need for dehumidifiers and air conditioning was highest. For example, Jacksonville, Florida, sees humidity management add about 1,500 kilograms of emissions to every kilogram of product. Colder climates, like Alaska and Chicago, tend to provide heating via natural gas, and so the amount of the renewable energy on the grid is less significant—but not insignificant, given the heavy lighting requirement for indoor growth. Despite having similar overall emissions to Jacksonville, far more of it comes from heating and cooling needs than from humidity management.

Unlike in traditional agriculture, fertilizer use isn’t a major factor in the overall greenhouse gas emissions. Many cannabis growers, however, increase the levels of carbon dioxide in the grow rooms, which can help plants grow faster under the right conditions. Typically, this carbon dioxide is the product of other processes, like ammonia production, and would have been released into the atmosphere as waste if it weren’t used this way. But there are still carbon emissions associated with compressing and shipping cannabis, so it ends up contributing about 500 kilograms of emissions for every kilogram of product.

Source

Leave a Reply

Your email address will not be published. Required fields are marked *