27 °C Singapore, SG
February 24, 2024
Latest News
Corio Generation and bp Alternative Energy Investment Ltd invest in South Korea Australia missing climate targets Advocating for US based offshore wind Broken Record, Temperatures hit new highs, yet world fails to cut emissions (again) Toshiba and GE to shore up Japanese offshore wind domestic supply chain How I got here… National University of Singapore green finance academic Sumit Agarwal Multi-billion-dollar renewables project earmarked for Yindjibarndi native title land Smart Energy Finances: Enel divests 50% of Australian renewable operations to Japanese oil and gas giant Critical minerals investments surged by 30% finds IEA Kung Fu nuns fight climate change One of Southeast Asia’s largest energy storage systems comes online Why turning waste into gas will add value to this Indigenous economy Renewable energy records tumble around Australia as rooftop solar power soars Topsoe supports SGP BioEnergy in renewable fuels production in Panama ‘Poor tropical regions’ suffer greatest economic damage from worsening heatwaves UNEP: Meeting global climate goals now requires ‘rapid transformation of societies’ Analysis: Africa’s unreported extreme weather in 2022 and climate change Partly wind-powered coal ship sails into Newcastle New fossil fuels ‘incompatible’ with 1.5C goal, comprehensive analysis finds Australian offshore wind ‘supercharged’ in Victoria as billions pledged to fast-track projects Goldwind turbine ‘breaks world record for largest rotor diameter’, Chinese media reports BW Ideol to work with developer Taiya on Taiwan floating wind pilot US to boost floating wind power Wind Power in South Korea – an overview GS E&C to develop bioethanol using cassava waste Korean business group has asked the US to make exceptions for Korean EV’s in Inflation Reduction Act Equinor’s Australian offshore wind debut Global energy transition stalls – 2022 Global Status Report in pictures India’s ReNew Power secures $1bn loan for gigascale 24/7 wind-solar-battery project POSCO International to merge with POSCO Energy

Welcome to the Era of Supercharged Lithium-Silicon Batteries

One way out of this problem is to sprinkle small amounts of silicon oxide—better known as sand—throughout a graphite anode. This is what Tesla currently does with its batteries. Silicon oxide comes pre-puffed, so it reduces the stress on the anode from swelling during charging. But it also limits the amount of lithium that can be stored in the anode. Juicing a battery this way isn’t enough to produce double-digit performance gains, but it’s better than nothing.

Cary Hayner, cofounder and CTO of NanoGraf, thinks it’s possible to get the best of silicon and graphite without the loss of energy capacity from silicon oxide. At NanoGraf, he and his colleagues are boosting the energy of carbon-silicon batteries by embedding silicon particles in graphene, graphite’s Nobel Prize-winning cousin. Their design uses a graphene matrix to give silicon room to swell and to protect the anode from damaging reactions with the electrolyte. Hayner says a graphene-silicon anode can increase the amount of energy in a lithium-ion battery by up to 30 percent.

But to push that number into the 40 to 50 percent range, you have to take graphite completely out of the picture. Scientists have known how to make silicon anodes for years, but they have struggled to scale the advanced nanoengineering processes involved in manufacturing them.

a researcher holding a glass cylinder device

An engineer at Sila Nanotechnologies developing the materials for the company’s silicon anode.

Courtesy of SilaNanoTech

Sila was one of the first companies to figure out how to mass-manufacture silicon nanoparticles. Their solution involves packing silicon nanoparticles into a rigid shell, which protects them from damaging interactions with the battery’s electrolyte. The inside of the shell is basically a silicon sponge, and its porosity means it can accommodate swelling when the battery is charging.

This is similar to the approach used by materials manufacturer Advano, which is producing silicon nanoparticles by the ton in its New Orleans factory. To lower the costs of producing nanoparticles, Advano sources its raw material from silicon wafer scrap from companies that make solar panels and other electronics. The Advano factory uses a chemical process to grind the wafers down into highly engineered nanoparticles that can be used for battery anodes.

“The real problem is not ‘Can we get a battery that is powerful?’ It’s ‘Can we make that battery cheap enough to build trillions of them?’” says Alexander Girau, Advano’s founder and CEO. With this scrap-to-anode pipeline, Girau believes he has a solution.

So far, none of these companies have seen their anode material used in a consumer product, but each is in talks with battery manufacturers to make it happen. Sila expects its anodes to be in unnamed wireless earbuds and smartwatches within a year. Advano, which counts iPod cocreator Tony Fadell among its investors, is also in talks to have its anodes placed in consumer electronics in the near future. It’s a long way from EVs, but proving the tech works in gadgets is a small step in that direction.

Source

Leave a Reply

Your email address will not be published. Required fields are marked *