31 °C Singapore, SG
April 20, 2021
Latest News
Loss of Arctic sea ice can spoil French wine harvest Southeast Asia to establish its own framework for green investments, but natural gas remains a feature Major Asian bank says it’s not practical in the short term to cut off clients in the coal business Volkswagen Reveals the ID.6 CROZZ and ID.6 X Guest post: How finance from rich nations could drive 40% of new coal plant emissions What’s Greener In Europe — A Train, A Plane, Or A Car? What’s Dirtiest? Polestar 0: A Truly Carbon-Neutral Car By 2030 University researchers raise a toast to biofuel prospects How can small renewable power producers help the Philippines reach its 35% clean energy target? New report hails the decade of renewables as 2020 hits capacity record Low Carbon Aluminum Boosted By Audi’s Use In Automotive First To avoid future pandemics, reverse the destruction of ecosystems Eni’s new treatment plant begins operations Smart energy managed service stations coming in Singapore Is 2021 when net zero targets become a central focus for world leaders? Australia ranked worst in world on Covid recovery spending on green options How wind power is leading America’s energy transition Indoor-Grown Weed Is Spewing Carbon Into the Atmosphere China selects Siemens Energy transformers for first 66kV offshore wind farm LG Energy Solution to invest $4.5bn in US battery production expansion Waning support for nuclear power 10 years after Fukushima Enterprises’ sustainable development contributes to Việt Nam’s prosperity: PM Grab is hatching a carbon-cutting plan Tata Power unveils blockchain-enabled solar trading for Delhi customers Construction set to start on Australia’s first lithium-ion battery manufacturing plant UK Ford Mustang Mach-E Buyers Get Big Charging Boost Via BP Pulse Network Solar power’s future could soon be overshadowed Why a managed shift away from fossil fuels is essential and urgent. Including for petrostates. Dangerous narratives and climate migration IEA releases India Energy Outlook 2021 report

Welcome to the Era of Supercharged Lithium-Silicon Batteries

One way out of this problem is to sprinkle small amounts of silicon oxide—better known as sand—throughout a graphite anode. This is what Tesla currently does with its batteries. Silicon oxide comes pre-puffed, so it reduces the stress on the anode from swelling during charging. But it also limits the amount of lithium that can be stored in the anode. Juicing a battery this way isn’t enough to produce double-digit performance gains, but it’s better than nothing.

Cary Hayner, cofounder and CTO of NanoGraf, thinks it’s possible to get the best of silicon and graphite without the loss of energy capacity from silicon oxide. At NanoGraf, he and his colleagues are boosting the energy of carbon-silicon batteries by embedding silicon particles in graphene, graphite’s Nobel Prize-winning cousin. Their design uses a graphene matrix to give silicon room to swell and to protect the anode from damaging reactions with the electrolyte. Hayner says a graphene-silicon anode can increase the amount of energy in a lithium-ion battery by up to 30 percent.

But to push that number into the 40 to 50 percent range, you have to take graphite completely out of the picture. Scientists have known how to make silicon anodes for years, but they have struggled to scale the advanced nanoengineering processes involved in manufacturing them.

a researcher holding a glass cylinder device

An engineer at Sila Nanotechnologies developing the materials for the company’s silicon anode.

Courtesy of SilaNanoTech

Sila was one of the first companies to figure out how to mass-manufacture silicon nanoparticles. Their solution involves packing silicon nanoparticles into a rigid shell, which protects them from damaging interactions with the battery’s electrolyte. The inside of the shell is basically a silicon sponge, and its porosity means it can accommodate swelling when the battery is charging.

This is similar to the approach used by materials manufacturer Advano, which is producing silicon nanoparticles by the ton in its New Orleans factory. To lower the costs of producing nanoparticles, Advano sources its raw material from silicon wafer scrap from companies that make solar panels and other electronics. The Advano factory uses a chemical process to grind the wafers down into highly engineered nanoparticles that can be used for battery anodes.

“The real problem is not ‘Can we get a battery that is powerful?’ It’s ‘Can we make that battery cheap enough to build trillions of them?’” says Alexander Girau, Advano’s founder and CEO. With this scrap-to-anode pipeline, Girau believes he has a solution.

So far, none of these companies have seen their anode material used in a consumer product, but each is in talks with battery manufacturers to make it happen. Sila expects its anodes to be in unnamed wireless earbuds and smartwatches within a year. Advano, which counts iPod cocreator Tony Fadell among its investors, is also in talks to have its anodes placed in consumer electronics in the near future. It’s a long way from EVs, but proving the tech works in gadgets is a small step in that direction.

Source

Leave a Reply

Your email address will not be published. Required fields are marked *